Dysregulation of intestinal crypt cell proliferation and villus cell migration in mice lacking Kruppel-like factor 9.

نویسندگان

  • Frank A Simmen
  • Rijin Xiao
  • Michael C Velarde
  • Rachel D Nicholson
  • Margaret T Bowman
  • Yoshiaki Fujii-Kuriyama
  • S Paul Oh
  • Rosalia C M Simmen
چکیده

Krüppel-like factor 9 (Klf9), a zinc-finger transcription factor, is implicated in the control of cell proliferation, cell differentiation, and cell fate. Using Klf9-null mutant mice, we have investigated the involvement of Klf9 in intestine crypt-villus cell renewal and lineage determination. We report the predominant expression of Klf9 gene in small and large intestine smooth muscle (muscularis externa). Jejunums null for Klf9 have shorter villi, reduced crypt stem/transit cell proliferation, and altered lineage determination as indicated by decreased and increased numbers of goblet and Paneth cells, respectively. A stimulatory role for Klf9 in villus cell migration was demonstrated by bromodeoxyuridine labeling. Results suggest that Klf9 controls the elaboration, from intestine smooth muscle, of molecular mediator(s) of crypt cell proliferation and lineage determination and of villus cell migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased apoptosis and accelerated epithelial migration following inhibition of hedgehog signaling in adaptive small bowel postresection.

The intestinal epithelium undergoes a marked adaptive response following loss of functional small bowel surface area characterized by increased crypt cell proliferation and increased enterocyte migration from crypt to villus tip, resulting in villus hyperplasia and enhanced nutrient absorption. Hedgehog (Hh) signaling plays a critical role in regulating epithelial-mesenchymal interactions durin...

متن کامل

Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/Mcpt4-dependent mechanism.

Altered intestinal barrier function is postulated to be a central predisposing factor to intestinal diseases, including inflammatory bowel diseases and food allergies. However, the mechanisms involved in maintaining homeostatic intestinal barrier integrity remain undefined. In this study, we demonstrate that mice deficient in mast cells (Kit(W-sh/W-sh) [Wsh]) or mast cell chymase (Mcpt4(-/-)) h...

متن کامل

Induction of intestinal epithelial proliferation by glucagon-like peptide 2.

Injury, inflammation, or resection of the small intestine results in severe compromise of intestinal function. Nevertheless, therapeutic strategies for enhancing growth and repair of the intestinal mucosal epithelium are currently not available. We demonstrate that nude mice bearing subcutaneous proglucagon-producing tumors exhibit marked proliferation of the small intestinal epithelium. The fa...

متن کامل

Differential expression of the VLA family of integrins along the crypt-villus axis in the human small intestine.

Regulation of epithelial cell proliferation, migration and differentiation under physiological conditions remains poorly understood. Interaction of the cells with their underlying basement membrane through integrins, a specific subset of cell surface binding proteins, is one potential mechanism. In the present work, I examined this hypothesis by investigating the distribution of a variety of ep...

متن کامل

Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice.

Expression of a mutated cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to enhance proliferation within CF airways, and cells expressing a mutated CFTR have been shown to be less susceptible to apoptosis. Because the CFTR is expressed in the epithelial cells lining the gastrointestinal tract and all CF mouse models are characterized by gastrointestinal obstruction, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 292 6  شماره 

صفحات  -

تاریخ انتشار 2007